Adaptive Neuro-Fuzzy control of Autonomous Ground Vehicle (AGV) based on Machine Vision
نویسندگان
چکیده
منابع مشابه
designing unmanned aerial vehicle based on neuro-fuzzy systems
در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...
Adaptive Neuro-Fuzzy Technique for Autonomous Ground Vehicle Navigation
This article proposes an adaptive neuro-fuzzy inference system (ANFIS) for solving navigation problems of an autonomous ground vehicle (AGV). The system consists of four ANFIS controllers; two of which are used for regulating both the left and right angular velocities of the AGV in order to reach the target position; and other two ANFIS controllers are used for optimal heading adjustment in ord...
متن کاملAdaptive Neuro-Fuzzy Technique for Autonomous Ground
This article proposes an adaptive neuro-fuzzy inference system (ANFIS) for solving navigation problems of an autonomous ground vehicle (AGV). The system consists of four ANFIS controllers; two of which are used for regulating both the left and right angular velocities of the AGV in order to reach the target position; and other two ANFIS controllers are used for optimal heading adjustment in ord...
متن کاملVision-Based Autonomous Ground Vehicle Navigation
The Intelligent Ground Vehicle Competition (IGVC) is an international collegiate robotics competition that tasks each team to design, build, and program a fully autonomous mobile ground vehicle. Each successful entry must autonomously navigate through an outdoor obstacle course using only the sensors and computing power on-board the robot. As per the offical rules, the competition is split into...
متن کاملEfficient Neuro-Fuzzy Control Systems for Autonomous Underwater Vehicle Control
This paper examines several clustering methods for the structure learning in constructing efficient neuro-fuzzy systems. The structure learning establishes the internal structure (i.e., the number of term sets and fuzzyrule base generation) of a given neuro-fuzzy architecture. The fundamental ideas of existing rule generation algorithms are addressed and discussed. Performance of the neuro-fuzz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Research Journal
سال: 2019
ISSN: 1110-5615
DOI: 10.21608/erj.2019.122532